Surface charge, electroosmotic flow and DNA extension in chemically modified thermoplastic nanoslits and nanochannels.

نویسندگان

  • Franklin I Uba
  • Swathi R Pullagurla
  • Nichanun Sirasunthorn
  • Jiahao Wu
  • Sunggook Park
  • Rattikan Chantiwas
  • Yoon-Kyoung Cho
  • Heungjoo Shin
  • Steven A Soper
چکیده

Thermoplastics have become attractive alternatives to glass/quartz for microfluidics, but the realization of thermoplastic nanofluidic devices has been slow in spite of the rather simple fabrication techniques that can be used to produce these devices. This slow transition has in part been attributed to insufficient understanding of surface charge effects on the transport properties of single molecules through thermoplastic nanochannels. We report the surface modification of thermoplastic nanochannels and an assessment of the associated surface charge density, zeta potential and electroosmotic flow (EOF). Mixed-scale fluidic networks were fabricated in poly(methylmethacrylate), PMMA. Oxygen plasma was used to generate surface-confined carboxylic acids with devices assembled using low temperature fusion bonding. Amination of the carboxylated surfaces using ethylenediamine (EDA) was accomplished via EDC coupling. XPS and ATR-FTIR revealed the presence of carboxyl and amine groups on the appropriately prepared surfaces. A modified conductance equation for nanochannels was developed to determine their surface conductance and was found to be in good agreement with our experimental results. The measured surface charge density and zeta potential of these devices were lower than glass nanofluidic devices and dependent on the surface modification adopted, as well as the size of the channel. This property, coupled to an apparent increase in fluid viscosity due to nanoconfinement, contributed to the suppression of the EOF in PMMA nanofluidic devices by an order of magnitude compared to the micro-scale devices. Carboxylated PMMA nanochannels were efficient for the transport and elongation of λ-DNA while these same DNA molecules were unable to translocate through aminated nanochannels.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of multivalent ions on electroosmotic flow in micro- and nanochannels.

In this work, the effect of multivalent ions on electroosmotic flow is investigated for multiple electrolyte components. The cases studied include incorporating Ca2+ and HPO4(2-) and other monovalent ions, such as K+ and H2PO4-, into an aqueous NaCl solution. The governing equations are derived and solved numerically. The boundary conditions for the governing equations are obtained from the ele...

متن کامل

Scaling theory of DNA confined in nanochannels and nanoslits.

A scaling analysis is presented of the statistics of long DNA confined in nanochannels and nanoslits. It is argued that there are several regimes in between the de Gennes and Odijk limits introduced long ago. The DNA chain folds back on itself giving rise to a global persistence length that may be very large owing to entropic deflection. Moreover, there is an orientational excluded-volume effec...

متن کامل

Control of electroosmotic flow in laser-ablated and chemically modified hot imprinted poly(ethylene terephthalate glycol) microchannels.

The fabrication of microchannels in poly(ethylene terephthalate glycol) (PETG) by laser ablation and the hot imprinting method is described. In addition, hot imprinted microchannels were hydrolyzed to yield additional charged organic functional groups on the imprinted surface. The charged groups are carboxylate moieties that were also used as a means for the further reaction of different chemic...

متن کامل

Mesoscopic simulations of electroosmotic flow and electrophoresis in nanochannels

We present dissipative particle (DPD) simulations of electrolyte flow in nanochannels for varying salt concentration and surface slip conditions. First, a method is presented by which the slip length δ Β at the channel boundaries can be tuned systematically from negative to infinity by introducing suitable wall-fluid friction forces. Using this method, we study electroosmotic flow (EOF) in nano...

متن کامل

Electroosmotic Flow in Mixed Polymer Brush-Grafted Nanochannels

Mixed polymer brush-grafted nanochannels—where two distinct species of polymers are alternately grafted on the inner surface of nanochannels—are an interesting class of nanostructured hybrid materials. By using a coarse-grained molecular dynamics simulation method, we are able to simulate the electrokinetic transport dynamics of the fluid in such nanochannels as well as the conformational behav...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Analyst

دوره 140 1  شماره 

صفحات  -

تاریخ انتشار 2015